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Abstract: We propose a search equilibrium model in which homogeneous firms post wages along
with a vacancy to attract job-seekers, while homogeneous unemployed workers invest in
costly job-seeking. The key innovation relies on the organization of the search market and
the search behavior of the job-seekers. The search market is segmented by wage level,
and individuals are ubiquitous in the sense they can choose the amount of search effort
spent on each (sub-)market. We show that there exists a non-degenerate equilibrium wage
distribution. Remarkably, the density of this wage distribution is hump-shaped, and it
can be right-tailed. Our results are illustrated by an example originating a Beta wage
distribution.
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1 Introduction

This paper is a theoretical contribution to the literature on frictional wage dispersion. We
propose a search equilibrium model in which homogeneous firms post wages along with a vacancy
to attract job-seekers, while homogeneous unemployed workers invest in costly job-seeking. The
key innovation resides in the organization of the search market and the search behavior of the
job-seekers. The search market is segmented by wage, and individuals are ubiquitous: they can
choose the amount of search effort spent on each (sub-)market. We show that there exists a
non-degenerate equilibrium wage distribution. The density of this wage distribution is hump-
shaped, and it can be right-tailed. Our results are illustrated by an example originating a Beta
wage distribution.

Why is this important? The size of residual wage dispersion in Mincerian wage regressions
has motivated a major interest in understanding of wage distribution for homogeneous labor.
Search frictions are natural ingredients behind the failure of the law of one price. Hence, modern
theories of wage dispersion provide search-theoretic microfoundations for residual wage disparity.
However, models of endogenous residual wage dispersion are more credible if they are able to
reproduce the properties of empirical wage distributions. Policy analysts can be more confident
in the predictions of such models regarding the impacts of unemployment compensation, pay-
roll taxes, and so on. Labor economists are aware of this, and that is why models of frictional
wage distribution have been estimated on a number of occasions. As we discuss below, the most
commonly used models do not feature empirically plausible wage distributions. In particular,
they do not predict the single-peakedness property. This particularity is usually pinned down
by the explicit modelling of heterogeneity. Our model claims that search frictions alone can
originate the single peak and the long right tail. This strengthens the point made by this
particular field of Labor Economics. As a by-product, it also means that our model is a natural
candidate for structural estimation.

Our paper is based on two key assumptions. First, the search market is segmented by
wages. Jobs advertise wages, and two jobs paying different wages belong to two different search
locations. Second, workers can choose their search investment on each market place. The
technology that transforms search investment into probability to match has marginal decreasing
returns. Workers can offset a lower return at given search intensity by a lower search intensity.
This leads them to participate in a continuum of markets: they are, in this respect, ubiquitous.

In this setting, we obtain (i) a non-degenerate wage distribution, and (ii) a single-peaked
density of the wage distribution as natural outcomes.

The main results can be explained as follows. Workers rationally seek jobs offering different
wages, and, therefore, firms offer different wages in equilibrium. The path of market-specific
search investment reflects the path of market-specific return to search. As the return to search
first increases, and then decreases with wage, search investment evolves non-monotonously with
the wage. In turn, the number of vacancies on each market responds to two effects. First, it
tends to decrease with the wage, as paying higher wages must be compensated by lower search
costs, and thus longer job queues. Second, it tends to increase with the number of effective
job-seekers, because recruitment rates depend on the ratio of vacancies to effective number of
job-seekers. As a result, the number of vacancies tends to adopt the path of market-specific
search investment. The combination of these two effects implies that the number of vacancies
is first increasing, and then decreasing in wage. It follows that the density of the wage offer
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distribution is hump-shaped. Finally, the actual wage distribution can be deduced from the wage
offer distribution and the knowledge of search investments. Its density is also single-peaked.

Equilibrium wage distributions are also consistent with another property of empirical wage
distributions: they are right-tailed. In our framework, we define a long right tail by the re-
quirement that the slope of the density of the distribution tends to zero as wage becomes closer
to the upper bound of the support of the distribution. Then, we show that the density of the
wage offer distribution is always right-tailed, while the density of the actual wage distribution
may or may not be right-tailed. All these properties are illustrated by an example, in which the
matching technology is Cobb-Douglas, and the efficiency of search effort is isoelastic. In that
case, the wage offer distribution and the actual wage offer distribution follow Beta distributions.

Our paper matches two distinct ideas that have been investigated previously in the literature
on search unemployment: search is directed, and individuals participate in different markets
simultaneously.

First, search is directed: the search market is segmented by wages, and individuals choose
which wage/job to prospect. Directed search models have been introduced first by Hosios (1990),
Montgomery (1991), and Moen (1997). In such models, workers can choose which jobs they apply
for — or, alternatively, which market they prospect —, while the probability of getting a job is a
decreasing function of the length of the job queue. Wage competition thus takes place at the time
of wage/market choice. In equilibrium, all wage offers must yield the same utility: if not, the
jobs would not be prospected. This implies that the employment (recruitment) probability is a
decreasing (an increasing) function of the wage. Typically, there is a unique wage offer balancing
workers’ marginal cost of seeking the highest wage offer (a lower employment probability) and
their marginal benefit (a better wage once employed). Our model departs from usual directed
search models because it features equilibrium wage dispersion. Interestingly, search investment is
highest on the unique market that would have been prospected under directed search assumption.

Second, individuals simultaneously take part in different segments of the search market. This
idea is increasingly popular in models devoted to two-sided heterogeneity. The search market
is segmented by job type, and workers choose the subset of sub-markets they participate in.
In models devoted to overeducation, educated workers seek both complex and simple positions
while uneducated workers only search for simple jobs (see Gautier, 2002). In models with mul-
tidimensional skills, workers have a bundle of skills and participate in sub-markets on the basis
of comparative advantage (see Moscarini, 2001), or on the basis of their ability to perform on
the underlying technologies (see Charlot, Decreuse and Granier, 2005). Wage segmentation
is a natural extension of job segmentation: different jobs are usually associated with different
wages, so that individuals actually perceive job segmentation as wage segmentation. It is worth
discussing the impact of this assumption in terms of congestion externalities. In our model,
vacancies offering different wages do not create congestion effects on each other. An additional
offer at 40,000 euro a year does not reduce the probability of filling a position offering 30,000
euro a year at given search intensities. However, the former offer raises the welfare of the un-
employed. In response, the unemployed reduce their effort to obtain the latter wage offer. As a
consequence, the probability to fill the latter position is lower. This argument may seem rather
difficult to accept when one imagines the case of a 40,000 euro a year position versus a 39,999
euro a year position. Continuous segmentation is an assumption made for simplicity. We believe
that accounting for discrete segmentation would not alter our main results1.

1Accounting for discrete segmentation would raise an important issue: how could one endogenize the different
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The shape of the wage distribution is a major property of our paper that distinguishes it
from other models of frictional wage dispersion. Such models belong to two main categories.
First, there are papers that introduce on-the-job search. If workers search on-the-job, reservation
wages are heterogenous. Under random search assumption, Burdett and Mortensen (1998) show
that this heterogeneity in reservation wages implies the existence of a non-degenerate wage
distribution. However, the density of the wage distribution is strictly increasing. De la Croix
and Shi (forthcoming) consider a directed search version. They show that the density of the
wage offer distribution is strictly decreasing. In addition, at a given initial wage, all workers
prospect the same jobs, which means they all receive the same wage in the event of being hired.
Second, there are papers which introduce firm heterogeneity. Van den Berg and Ridder (1998)
do so while estimating the Burdett-Mortensen model. Mortensen (2000) examines productivity
choices in the same model. Postel-Vinay and Robin (2002a) also endogenize firm heterogeneity,
but in a model where employers can react to other firms approaching their workers by making
a counteroffer (see also Postel-Vinay and Robin, 2002b). These papers manage to generate a
hump-shaped wage distribution. In a close framework, but with only ex-post heterogeneity (i.e.
when the quality of the match is revealed), Moscarini (2005) shows that it is possible to arrive
at a wage distribution with good empirical properties (unimodal, skewed, with a Paretian right
tail) with a simple Gaussian output noise. Our paper complements these studies by showing
that search frictions alone can generate a non-degenerate, single-peaked and right-tailed wage
distribution.

The paper thematically closest to ours are those on multiple applications. These papers
modify the matching technology so that a worker can receive multiple offers at the same time.
Thus, wage competition takes place at the time of choosing between different job offers. This
way of analyzing the search process is very close to Stigler (1961). In Acemoglu and Shimer
(2000), firms post wages and workers choose the number of offers they receive. Acemoglu and
Shimer show that there is equilibrium wage dispersion. However, the density of the wage offer
distribution is strictly decreasing with a mass point at its upper bound. In a similar vein,
Galenianos and Kircher (2005) — GK — consider the directed search model of Albrecht, Gautier
and Vroman (2005) in which firms post wages and the workers send multiple applications. Unlike
Albrecht et al., GK assume that firms commit to pay the posted wage irrespective of the number
of job offers received by the applicant2. They also obtain a strictly decreasing density of the
wage distribution. In our paper, workers also send multiple applications and firms post wages.
However, there are two major differences with GK. First, individuals can only receive one offer
at a time in our framework. Wage competition, therefore, takes place at the time of attracting
the job-seekers, and not once they have obtained several offers. Second, the intensity of search
investment can vary with the wage. This is why there are only a few firms at the left and at
the right of the wage distribution, while the number of jobs decreases with the wage in GK. We
believe that allowing the workers to court the jobs with various degrees of aggressiveness is as
important as allowing for multiple offers at a time.

wage thresholds delimiting the different market segments? Is this a problem of information (it may be necessary
to save on search costs to aggregate 30,000 euro to 35,000 euro positions), or preference (30,000 euro to 35,000
euro positions offer similar standards of living, while a 40,000 euro position may change the life of the family).
Interestingly, models of segmentation by job type implicitly face similar problems: what is the difference between
simple jobs and complex jobs?

2Put otherwise, firms cannot react to other offers by increasing their initial wage in GK, while they can in
Albrecht et al.
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The rest of the paper proceeds as follows. Section 2 presents a model in which workers can
choose their search intensity, but are bound to choose one and only one search market. We
call the associated equilibrium concept the localized search equilibrium, which is basically the
equilibrium of a standard directed search model with endogenous search intensity. In Section 3,
workers are no longer obliged to choose a particular market. We call the associated equilibrium
concept the ubiquitous search equilibrium. Section 4 studies equilibrium wage distributions.
Section 5 discusses the efficiency of the decentralized outcome. Section 6 concludes.

All proofs are set forth in the appendix.

2 Localized search

What we call a localized search equilibrium is a version of Moen’s (1997) competitive search
equilibrium in which the search effort is made endogenous.

2.1 Search technology

Our model follows the lines of the wage posting search model developed, among others, by Moen
(1997) and Acemoglu and Shimer (1999, 2000). In this framework, firms post vacancies with
non-negotiable wages. Workers, knowing all the posted wages, choose the amount of effort they
will spend to search for a job. While making this choice, they are aware that if they decide to
search for a job offering a wage w, they will compete with other workers seeking the same wage.
Symmetrically, if a firm posts a vacancy associated with the wage w, it will compete to attract
workers with the other firms offering the same wage. In other words, for each wage w, workers
face a specific queue length and vacant jobs have a specific probability of being filled. For
Acemoglu and Shimer (1999, 2000), such a representation of the search process recognizes that
the labor market is segmented by wages and that search frictions exist within each particular
sub-market (or island). Therefore, firms advertise wages, and all firms advertising a given wage
and all workers applying for these jobs form a sub-market.

As in Moen (1997), we assume that an unemployed person is bound to search for a job on one
and only one island. This is the reason why we use the term “localized” to label our equilibrium
concept. Thus, the search process involves two stages: 1) firms post wages, 2) each job-seeker
chooses on which sub-market she will search for a job and decides upon the amount of search
effort she will spend on the previously chosen sub-market.

An unemployed person whose search effort is s bears the cost c(s), but increasing effort
provides more contacts with potential employers. In such a perspective, we will distinguish the
amount of search effort from the efficiency of such an effort. When a job-seeker invests an
amount of effort s, the efficiency of this effort is measured by the function x (s). In the sequel,
we make the following assumption on the functions c(s) and x(s) influencing the search process.

Assumption A1 The cost of effort function c : [0,+∞) → [0,+∞) is strictly increasing,
convex, twice differentiable, and satisfies c (0) = 0, c0 (0) = c0 > 0, and c0 (+∞) = +∞.

The efficiency of effort function x : [0,+∞)→ [0,+∞) is strictly increasing, strictly concave,
twice differentiable, and satisfies x (0) = 0, x0 (0) = +∞, and x0 (+∞) = 0.

The efficiency of effort technology is (sub)market-specific, while the cost of search depends
on the overall search effort. This distinction between market-specific and overall search effort is
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not useful in the localized search model, where workers must choose one and only one market
before searching for a job. However, the fact that the efficiency of effort features decreasing
marginal returns on each market will be crucial in the ubiquitous search model of section 3.
Beyond such technical significance, Assumption A1 captures the main aspects of the job search
process. Job-seeking, like the search for ideas, has two components: tiredness and efficiency.
Tiredness depends on overall investment. This is why the marginal search cost depends on
the aggregate search investment. Efficiency depends on the amount of resources spent on the
particular market that is prospected. So far, the marginal productivity of search investment
in terms of increased probability to match only depends on market-specific investment. Such
marginal productivity is decreasing, which reflects the fact that courting jobs more aggressively
involves tasks of increasing difficulties. For instance, it is easy to put a stamp on the letter of
one’s application. It is more difficult to taylor the letter to the characteristics of the job and of
one’s CV.3

A sub-market may be either closed — when no one enters it — or open. Which sub-markets
are closed and which sub-markets are open is an outcome of the model. When there are u(w)
unemployed persons searching on the sub-market offering the wage w, and when the search
effort of an individual on this sub-market reaches s(w), the overall efficient search effort on this
sub-market amounts to x(w)u(w) where x(w) ≡ x [s(w)] is the market-specific mean efficient
search intensity. With v(w) vacancies offering the wage w, the flow number of matches on island
w is equal to M [x(w)u(w), v(w)], where the matching function satisfies the following standard
assumption:

Assumption A2 The technology M : [0,+∞) × [0,+∞) → [0,+∞) is twice continuously
differentiable, strictly increasing in each of its arguments, strictly concave and linearly homo-
geneous. It satisfies the boundary conditions M (U, 0) = M (0, V ) = 0, and lim

U→+∞
M(U, V ) =

lim
V→+∞

M(U, V ) = +∞.

Let m (θ) ≡M (1/θ, 1). The flow probability for a vacant job offering the wage w to meet a
job-seeker is:

m [θ (w)] ≡ M [x(w)u(w), v(w)]

v(w)
,

while the flow probability for a job seeker to meet a vacant job per efficient unit of search is:

θ (w)m [θ (w)] ≡ M [x(w)u(w), v(w)]

x(w)u(w)
.

In these formulas, θ (w) ≡ v (w) /x (w)u(w) is the market-specific tightness, that is the
tightness specific to island w.

3Here, there is an analogy with the way we write our papers. Most of us write several papers at a time, and
we know that they have heterogenous qualities. Why don’t we only work on the best one? The reason is the
following. The returns on the first hours spent on each paper is huge: your first draft was not so bad after all!
Then, the hourly return of your search activity on a particular paper drops significantly (step 3 of your so intuitive
result is finally proved). You may find it worthwhile to write several papers of different qualities because you can
compensate a lower expected reward by a higher marginal productivity of your search investment. Finally, you
will spend more time on the best paper, but you will also work on your other projects.
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2.2 Agents’ behavior

We study the steady state of a continuous time economy. There are a continuum of identical
and infinitely-lived workers, and a continuum of firms. Each firm is associated with only one
job. The measure of workers is normalized to one, while the measure of firms is endogenously
determined through entry. Both are risk neutral and discount time at instantaneous rate r.
Jobs can be either filled or vacant, while workers can be either employed or unemployed. A
worker/firm pair produces flow output y until (exogenous) separation at rate q. Unemployed
workers enjoy unemployment income z, 0 ≤ z < y, while firms endowed with a vacancy bear the
flow cost h.

Following Moen (1997) and Acemoglu and Shimer (1999, 2000), we assume that workers
observe all posted wages w and corresponding market tightness θ(w). Workers decide which
sub-market to enter on the basis of this knowledge. Let Vu(w) and Ve (w) denote respectively,
the value of unemployment and the value of employment on the sub-market offering the wage
w. The asset value equations for Ve (w) and Vu(w) are given by:

rVe(w) = w + q [Vu(w)− Ve(w)] (1)

rVu(w) = max
s
{z − c(s) + x (s) θ (w)m [θ (w)] [Ve(w)− Vu(w)]} (2)

Let us denote by R (w) ≡ rVu (w) the flow gain of an unemployed person. The optimal
search investment s (w) responds to:

c0 [s(w)] = x0 [s(w)] θ (w)m [θ (w)]
w −R (w)

r + q
(3)

R(w) = z − c [s (w)] + x [s (w)] θ (w)m [θ (w)]
w −R (w)

r + q
(4)

The asset values of a vacancy advertised at wage w, denoted Πv(w), and of a filled job paying
w, denoted Πe(w), satisfy the arbitrage equations:

rΠv(w) = −h+m [θ (w)] [Πe(w)−Πv(w)] , rΠe(w) = y − w + q [Πv(w)−Πe(w)] (5)

Consequently, when an entrepreneur decides to post the wage w, her expected gain is given
by:

rΠv(w) =
−h(r + q) +m [θ (w)] (y − w)

r + q +m [θ (w)]
(6)

The main consequence of the assumption of localized search, whereby a job-seeker is con-
strained to search for a job on one and only one sub-market, is that competition between
employers to attract workers obliges firms to offer the same expected utility for the unemployed
on each open sub-market. Let us denote by Vu this common value, and by R = rVu = max

w
R (w)

the associated reservation wage. This has two implications.
First, the search effort is the same on all open sub-markets. Formally, let Ω ∈ [R, y] be the

set of potentially open sub-markets. For all w ∈ Ω, equations (3) and (4) imply that

R = z − c [s(w)] + c0 [s(w)]
x [s(w)]

x0 [s(w)]
(7)
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Assumption A1 implies that, for a given R ≥ z, there exists a unique search effort s(w)
which is the solution of equation (7). This optimal search effort does not depend on w, and we
will denote it by σ(R). It is easy to check that σ0(R) > 0.

Second, the wage on any open sub-market maximizes the utility of the unemployed. This
implies that there is a monotonous relationship between tightness on open sub-markets and
workers’ reservation wage. Formally, for all w ∈ Ω, equations (3) and (7) give:

c0 [σ(R)] = x0 [σ(R)] θ (w)m [θ (w)]
w −R

r + q
(8)

This equality implicitly defines tightness as a function θ(w,R) of the workers’ reservation
wage. It is easy to check that θR (w,R) > 0.

2.3 Localized search equilibrium

For each sub-market, firms formulate expectations concerning the associated market tightness.
Given that only a subset of potential sub-markets will be opened in equilibrium, such expec-
tations concern both equilibrium and out-of-equilibrium outcomes. We shall denote by eθ (w)
firms’ common expectation on the pattern by wage of market tightness. In the sequel, we will
restrain ourselves to the following hypothesis.

Assumption A3 Let R ≥ 0 be given. Firms’ expectations are given by

eθ (w) = ½ θ (w,R) if w ∈ [R, y]
0 elsewhere

.

The idea is as follows. Firms have no reason to post a wage on a sub-market that will not
be prospected by job-seekers. Yet, they must assign a value to the tightness variable when
evaluating the opportunity to post a wage on a particular sub-market. They rationally expect
that if this sub-market were open, it would be consistent with workers’ maximization process.
An entrepreneur who chooses to post the wage w expects, for a given reservation wage R, that
the corresponding effort σ(R) and market tightness θ(w) must satisfy the system of equations
(7) and (8).

On the basis of this expectation eθ(w), each entrepreneur maximizes her expected gain Πv(w)
given by (6). Differentiating Πv(w) with respect to w and setting this derivative to zero yields:n

m0
heθ (w)ieθ0 (w) (y −w)−m

heθ (w)ionr + q +m
heθ (w)io

+m0
heθ (w)ieθ0 (w)n−h(r + q) +m

heθ (w)i (y − w)
o
= 0

The free-entry condition, Πv(w) = 0, implies that the last term between brackets vanishes
and the optimal market wage is characterized by the following equation:

α
³eθ (w)´ eθ0 (w)eθ (w) = − 1

y − w
(9)

where α (θ) = −θm0 (θ) /m (θ) ∈ (0, 1) is the elasticity of the recruitment rate with respect
to market tightness.
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On the other hand, differentiating relation (8) with respect to w, one obtains:

eθ0 (w)eθ (w) = θw (w,R)

θ (w,R)
= − 1

[1− α (θ (w,R))] (w −R)

Substituting this expression of eθ0 (w) /eθ (w) into (9) gives the optimal market wage as a function
of reservation wage R and market tightness eθ(w):

w = α
³eθ (w)´ y + h1− α

³eθ (w)´iR (10)

In equilibrium, equation (6) implies that the market tightness θ (w) must satisfy:

m [θ (w)] =
h(r + q)

y − w
(11)

The consistency of expectations implies that eθ (w) = θ (w) in equilibrium. This yields

w = α (θ (w)) y + [1− α (θ (w))]R (12)

The following Lemma shows that this equation defines a unique wage for a given R. This
wage is the wage that would be determined in a Nash bargain with the worker bargaining power
parameter equal to the Hosios value, that is the elasticity of the matching technology with
respect to unemployment.

Lemma 1 Let φ : [0, y]×R→ R be such that

φ(w,R) ≡ α (θ (w)) y + [1− α (θ (w))]R− w with θ (w) = m−1
∙
h(r + q)

y −w

¸
,

For all R ∈ [0, y], φ (w,R) = 0 has a unique root in w.

The properties of the localized search equilibrium are summarized in the following proposi-
tion.

Proposition 1 Localized search equilibrium
Under Assumptions A1, A2 and A3,
(i) A localized search equilibrium is characterized by a quadruplet (θ∗, s∗, w∗, R∗) correspond-

ing to the equilibrium value of the labor market tightness, the search effort, the wage and the
flow gain of an unemployed person that satisfies:

m (θ) =
h(r + q)

y −w
(13)

c0 (s) = x0 (s) θm (θ)
w −R

r + q
(14)

R = z − c (s) + x (s) θm (θ)
w −R

r + q
(15)

w = α (θ) y + [1− α (θ)]R (16)

(ii) There exists a unique localized search equilibrium.
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Using equations (13) to (16), it is possible to show that s∗ and θ∗ are the solutions of the
following system:

h

m (θ∗)
=

[1− α (θ∗)] [y − z + c (s∗)]

r + q + x(s∗)α (θ∗) θ∗m (θ∗)
, c0 (s∗) =

α (θ∗)

1− α (θ∗)
hθ∗x0 (s∗) (17)

These equations will prove useful while studying the efficiency properties of the localized
search equilibrium (see Proposition 7 in Section 5).

To complete the characterization of the localized search equilibrium, it remains to define the
unemployment rate. As the equilibrium wage is unique, there is a unique opened (sub-)market.
On this market, the job finding rate, denoted by λ∗, is given by:

λ∗ = x [σ(R∗)] θ∗m(θ∗),

and the stationary equilibrium unemployment rate, denoted by u∗, stems from the equality
between the flows in and out of employment, i.e. q(1− u∗) = λ∗u∗. Finally, one has:

u∗ =
q

q + λ∗

For our purpose, the main result is that there is a unique equilibrium wage when job search
is localized. We now consider the labor market equilibrium when we relax the assumption of
localized search.

3 Ubiquitous search

3.1 Agents’ behavior with ubiquity

As in the previous section, the search market is segmented by wage. The behavior of entre-
preneurs remains unchanged, i.e. firms post vacancies with associated non-negotiable wages.
However, we now assume that an unemployed person is able to search simultaneously on every
existing sub-market. Hence, there is ubiquity on the search market: a job-seeker is not bound
to search on a single sub-market. Ubiquity means that the worker has to decide on the search
investment on every existing sub-market.

If there are u unemployed persons in the economy, the overall search effort on the sub-
market offering the wage w now amounts to x(w)u where x(w) still denotes the market-specific
mean efficiency of search efforts. With v(w) vacancies offering the wage w, the flow number of
matches on sub-market w is equal toM [x(w)u, v(w)], where the matching function still satisfies
Assumption A2. Consequently, the flow probability for a vacant job to meet a job-seeker and
the flow probability for a job-seeker to meet a vacant job per efficient unit of search on the
sub-market offering the wage w are given by:

m [θ (w)] ≡ M [x(w)u, v(w)]

v(w)
, θ (w)m [θ (w)] ≡ M [x(w)u, v(w)]

x(w)u
,

where market-specific tightness is now defined by θ (w) ≡ v (w) /x (w)u.
Let us denote by Vu the expected lifetime utility of an unemployed individual. If this person

takes a job paying w, she obtains the lifetime utility Ve(w) described by the arbitrage equation:

rVe(w) = w + q [Vu − Ve(w)]
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It follows that the reservation wage, R, is always such that R = rVu. A priori, the set of
possible wages — equivalently, the set of islands — covers the entire interval [z, y], but the set
of islands that will be visited belongs to the interval [R, y]. As in the previous section, each
job-seeker observes the posted wage w and the corresponding labor market tightness θ (w) on
each sub-market.

However, an unemployed person has to choose the set {s(w)} of search efforts that she will
simultaneously exert on each sub-market w. Let us denote by S =

R y
R s (w) dw the total search

effort, the expected gain of a job seeker reads:

rVu = max
s(.)

½
z − c (S) +

Z y

R
x [s (w)] θ (w)m [θ (w)] [Ve(w)− Vu] dw

¾
(18)

It must be stressed that unlike other models with multiple applications (see for instance GK,
or Albrecht et al., 2006), workers can only receive one offer at a time in our framework. This
property is highly convenient, since it makes the working of our model very similar to the stan-
dard job search model. In particular, workers follow a reservation wage strategy while deciding
which market to prospect. The reason why there are no multiple offers can be understood as
follows. Suppose that the search space is actually composed of a discrete number of matching
places, each of size dw. Hence, there are (y −R) /dw sub-markets. The probability of receiving
an offer from the subset [w,w + dw] during the interval of time dt is x [s (w)] θ (w)m [θ (w)] dwdt.
This probability decreases with the number of matching places. As dw tends to 0, the number
of matching places tends to infinity, and the probability of receiving an offer on a particular
sub-market tends to 0. As a result, the probability of receiving more than one offer at a time
tends to 0 as the interval of time dt also tends to 0. We give a complete proof of the result at
the end of the Appendix.

On sub-market w, the optimal search effort of an unemployed person is characterized by the
first-order condition:

c0(S) = x0 [s(w)] θ (w)m (θ (w))
w −R

r + q
, for all w ∈ [R, y] (19)

And the equation (18) defining Vu becomes:

R = z − c(S) +

Z y

R
x [s (w)] θ (w)m (θ (w))

w −R

r + q
dw (20)

The first-order condition (19) states that, in every sub-market, the marginal cost of searching
for a job must be equal to the marginal gain of this activity. This relation highlights the fact that
the search technology x(s) must exhibit marginal decreasing returns to obtain a definite search
effort associated with each sub-market. Indeed, under constant marginal returns to search, a
job-seeker would allocate their entire search investment to the sub-market that yields the largest
reward. Such a sub-market offers the best combination of wage and employment probability, i.e.
it gives the greatest expected utility gain represented by the product θ (w)m (θ (w)) (w −R).
Hence, despite the fact that workers may be allowed to search on several sub-markets at a
time, they would not use this possibility and only one market would be opened. This result no
longer applies with marginal decreasing returns in the search technology. A worker can then
compensate a lower reward by investing less, which raises the marginal productivity of the search
effort and leaves the marginal benefit to search unchanged.
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Consequently, there is no longer a unique value of the search effort: the search investment
varies on each prospected sub-market. Moreover, equations (19) and (20) imply that the reser-
vation wage R and the collection of search efforts {s (w)} are linked by

R = z − c(S) + c0(S)

Z y

R

x [s (w)]

x0 [s (w)]
dw (21)

S =

Z y

R
s (w) dw (22)

Tightness on each sub-market must satisfy equation (19). This equation defines tightness as a
function θ (w,R, {s (w)}) in which the reservation wage R and the set of search efforts {s (w)}
are linked by (21) and (22).

3.2 Ubiquitous search equilibrium

As in the localized search case, for each sub-market, firms formulate expectations concerning the
associated tightness. We shall still denote by eθ (w) firms’ common expectation on the pattern
by wage of market tightness. We consider the following assumption.

Assumption A3’ Let R ≥ z and {s (w)}w≥R such that (21) and (22) hold. Firms’ expectations
are given by eθ (w) = ½ θ (w,R, {s (w)}) if w ∈ [R, y]

0 elsewhere
.

Assumption A3’ is a mere adaptation of Assumption A3 in the context of ubiquitous search.
First, firms have no reason to post a wage on a sub-market that will not be prospected by the
job-seekers. Second, they must assign a value to the tightness variable when evaluating the
opportunity to post a wage on a particular sub-market. They rationally expect that if this sub-
market were opened, it would be consistent with workers’ maximization process. Consequently,
when an entrepreneur chooses to post a wage equal to w, she considers that, for a given reser-
vation wage R and a given collection {s (w)}w≥R of search efforts satisfying (21) and (22), the
market tigthness must satisfy the equation (19).

The asset values Πv(w) and Πe(w) of a vacancy posting a wage w and of a filled job paying
this wage are still defined by the relations (5). On the basis of her expectation eθ (w) defined
in Assumption A3’, each entrepreneur can maximize her expected gain Πv(w) given by (6).
Formally, the entrepreneur’s problem is the same as in the case with localized search. Thus, when
the free-entry condition Πv(w) = 0 is satisfied, the equilibrium value of the market tightness
function θ (w) is still given by equation (11) for any wage in the interval [R, y]. It is worth
noting that the latter equation means that a firm advertising a high wage vacancy expects this
vacancy to be filled quickly — m (θ (w)) has to be large — while a firm advertising a low wage
vacancy can wait longer. This explains why the equilibrium value of the tightness function must
be decreasing with the wage.

Proposition 2 Ubiquitous search equilibrium
Under Assumptions A1, A2 and A3’,

12



(i) A ubiquitous search equilibrium is characterized by a quadruplet (θ∗(w), s∗(w), S∗, R∗)
corresponding to the equilibrium value of the labor market tightness function, the search effort
function, the global effort and the flow gain of an unemployed person, that satisfies:

m [θ(w)] =
h(r + q)

y − w
, ∀w ∈ [R, y] (23)

c0(S) = x0 [s(w)] θ (w)m [θ (w)]
w −R

r + q
,∀w ∈ [R, y] (24)

R = z − c(S) +

Z y

R
x [s (w)] θ (w)m (θ (w))

w −R

r + q
dw (25)

S =

Z y

R
s (w) dw (26)

(ii) There exists a unique ubiquitous search equilibrium.

The ubiquitous search equilibrium displays two main features. First, it is unique. Second,
all wages belonging to the interval [R, y] are prospected, so that [R, y] is also the support of
the equilibrium wage distribution. These two features are deeply related to each other: they
crucially depend on the ubiquity assumption — the fact that there are no restrictions on the
size of prospected markets. Indeed, workers follow a reservation wage strategy. Hence, they
prospect all the markets that offer a wage larger than the reservation wage R. Without loss of
generality, suppose for instance there is an interval [a, b] ⊂ [R, y] such that wages belonging to
[a, b] are not offered in equilibrium. Consider the wage ŵ such that a < ŵ ≤ b. An employer
offering the wage b obtains (y − b) / (r + q) if the job is filled, or obtains 0 if it remains vacant.
This employer may decide to offer the wage bw. In such a case, he would be the only employer
on the corresponding sub-market, and, therefore, the probability of matching would be one in
any time interval. His profit would be (y − bw) / (r + q) > (y − a) / (r + q). Of course, such a
profit opportunity would be exploited, and employers would enter this new market until the
free entry condition is satisfied. Stated otherwise, there are no holes in the equilibrium set of
offered wages. Of course, the key reason relies on the fact that workers cannot be captured on
a particular subset of the search space.

To end characterization of the ubiquitous search equilibrium, the unemployment rate remains
to be defined. The job-finding rate is worth

λ =

Z y

R
x [s (w)] θ (w)m [θ(w)] dw,

that is the sum of the different rates of contact over the different markets that the job-seekers
prospect. Unemployment can then be computed from the equality between flows in and out of
unemployment: q(1− u) = λu. The unemployment rate is worth u = q/ (q + λ).

We now turn to the properties of the equilibrium.
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3.3 Market-specific search investment

Differentiating the logarithm of both sides of equation (24) with respect to w, we get:

−x
00 [s(w)]

x0 [s(w)]
s0(w) =

θ0(w)

θ(w)
[1− α (θ (w))] +

1

w −R
(27)

while differentiating (23) with respect to w still gives (9). Then, eliminating θ0(w)/θ(w)
between (27) and (9) one obtains:

s0 (w) ≡ − x0 [s(w)]

x00 [s(w)]

α (θ (w)) y + [1− α (θ (w))]R− w

α (θ (w)) (y −w)(w −R)
(28)

Equation (27) shows that the wage has two conflicting effects on search effort. On the one
hand, there is a positive direct effect. At given market tightness, a higher wage raises the return
to search, thereby motivating search investment (this effect is captured by the positive term
1/ (w −R)). On the other hand, there is a negative indirect effect. Indeed, market tightness de-
creases with the wage. A higher wage deteriorates the search prospects, thereby reducing search
investment (this effect is captured by the negative term [1− α (θ (w))] θ0(w)/θ (w)). Therefore
the sign of s0 (w) seems ambiguous. We can go further by noticing that the function φ(w,R)
defined in Lemma 1 appears at the right-hand side of equation (28). More precisely, one can
see that s0 (w) has the same sign as φ(w,R). This remark enables us to state the following
proposition.

Proposition 3 Pattern of search investment
Under Assumptions A1 to A3, the effort function s : [R, y] → [0,+∞) is ∩-shaped and

satisfies s (R) = s (y) = 0

The key finding of Proposition 3 is the non-monotonicity of the relationship between wage and
search investment depicted by Figure 1. The pattern of search investment reflects the pattern of
marginal reward to search. It should be recalled that such reward involves a peculiar combination
of wage and employment probability given by the expected utility gain θ (w)m [θ (w)] (w −R) .
Search investment is thus very small at both low and high wages. In the former case, employment
probability represented by θ (w)m [θ (w)] is large, but it is not worth investing much as the wage
w is close to the reservation wage R. In the latter case, the wage may be very good, but job
opportunities collapse. More generally, the direct positive effect of the wage on search investment
dominates at low wages, while the indirect negative effect due to lower tightness dominates at
higher wages. The search investment then reaches a maximum on the market where the reward
is the highest.

Let us denote by w1(R) the root of equation φ (w,R) = 0 that gives the largest search invest-
ment (see Figure 1). This wage is defined by w1(R) = α [θ (w1(R))] y + {1− α [θ (w1(R))]}R.
For R given, this wage is the only wage offer in the localized search equilibrium (see equation
(12)).

4 Wage distributions with ubiquity

The purpose of this section is to analyse the shape of the wage distribution that is implied by our
model. We proceed in three steps. First, we focus on the equilibrium wage offer distribution.
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Figure 1: Search investment by wage

Second, we analyse the wage distribution among employed workers. Third, we consider an
example.

4.1 Wage offer distribution

The number of vacancies advertised at wage w is worth v(w) = θ (w)x [s (w)]u, where u repre-
sents the unemployment rate. The total number of vacancies is thus v =

R y
R v (w) dw. The cdf

and the pdf of the wage offer distribution are then defined by

F (w) =

R w
R v (ξ) dξ

v
, F 0 (w) =

v(w)

v
= θ (w)x [s (w)]

u

v
(29)

How does the density change with the wage? Taking the second derivative of F yields

F 00 (w)

F 0 (w)
≡ θ0 (w)

θ (w)
+

x0 [s (w)] s0(w)

x [s (w)]
(30)

Changes in the density of the wage offer distribution reflect changes in the number of vacan-
cies associated with each wage (i.e. v0(w)/v (w) = F 00 (w) /F 0 (w)). Equation (30) shows that
such changes result from two main factors: the pattern of market tightness by wage on the one
hand, and the pattern of search investment by wage on the other hand. Hence, the right-hand
side of equation (30) is composed of two terms. The first term is negative and reflects the fact
that tightness is strictly decreasing in wage. Due to this term, the density of the wage offer
distribution tends to decrease with the wage as the number of job offers per unit of search
declines as the wage raises. The second term depicts the influence of search investments. It is

15



non-monotonous, reflecting the non-monotonicity of s (w). More precisely, it is positive at wages
close to the lower bound of the support [R, y] of the wage offer distribution, while it becomes
negative at wages close to the upper bound.

With the help of (9) and (28), we have:

F 00 (w)

F 0 (w)
=

γ(w) {α (θ (w)) y + [1− α (θ (w))]R− w}− (w −R)

α (θ (w)) (y −w)(w −R)
(31)

with γ(w) = − x02[s(w)]
x[s(w)]x00[s(w)] > 0. It appears that F 00(w) has the same sign as the function

ψ(w,R) ≡ γ(w)φ(w,R) − (w − R). Hence, the properties of the wage offer distribution will
depend on the number of roots of the equation ψ(w,R) = 0. The following assumption will be
useful to obtain more precise results.

Assumption A4 Let ψ : [0, y]×R→ R be such that

ψ(w,R) = γ(w)φ(w,R)− (w −R)

For all R ∈ [0, y], ψ(w,R) = 0 has a unique root in w.

One can check that this assumption is satisfied with a Cobb-Douglas matching function (α
is then a constant) and with an isoelastic efficiency search function (γ is then a constant).

Proposition 4 Properties of the wage offer distribution
Under Assumptions A1 to A3,
(i) Non-monotonicity. The wage offer distribution F : [R, y]→ [0, 1] is non-monotonous and

satisfies F 0 (R) = F 0 (y) = 0.
(ii) Single peak. If in addition A4 holds, the wage offer distribution is ∩-shaped
(iii) Right tail. If lim

θ→0
α (θ) > 0 and lim

w→y
γ (w) <∞, F 00 (y) = 0

We obtain three results. First, the density of the wage offer distribution is non-monotonous.
This is in sharp contrast with the literature discussed in the introduction, which predicts either
increasing or decreasing density of the wage offer distribution. In fact, the result is induced by
the non-monotonicity of the pattern of search investment by wage level. If search investment
were unable to vary with the wage, the density of the wage offer distribution would be strictly
decreasing, only reflecting the decreasing pattern of tightness with respect to the wage. Note
that ψ(w1(R), R) < 0: the peak of the wage offer distribution corresponds to a lower wage
than the peak of the search investment function. This reflects the fact that tightness is strictly
decreasing in wage. Second, the density is single-peaked provided some additional (yet not too
demanding) restrictions on the matching technology and the efficiency of effort function hold.
Third, the wage offer distribution generally has a flat tail at its upper bound.

4.2 Actual wage distribution

As search intensity varies with the wage level, the actual wage distribution (i.e. the distribution
of wages among employees, which coincides with the wage distribution among newly employed
workers) departs from the wage offer distribution. Let G(w) be the cdf of the actual wage
distribution among employees. This can be deduced from a standard flow equilibrium reasoning.
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For each wage w ∈ [R, y], the outflow from the pool of those employed who earn less than w
equals the inflow from the pool of unemployed:

q(1− u)G(w) = u

Z w

R
x [s(ξ] θ(ξ)m [θ(ξ)] dξ

Since q(1 − u) = λu, and remembering that v (w) = vF 0 (w) = x [s (w)] θ(w)u, it ensures
that:

G(w) =
v

λu

Z w

R
F 0(ξ)m [θ(ξ)] dξ

Thus, one has:
G0(w) =

v

λu
F 0(w)m [θ(w)] (32)

Differentiating this latter equality with respect to w and taking into account (9) gives:

G00 (w)

G0 (w)
=

F 00 (w)

F 0 (w)
− α (θ (w))

θ0 (w)

θ (w)
=

F 00 (w)

F 0 (w)
+

1

y − w
(33)

Using relation (31) that defines F 00(w), one obtains:

G00 (w)

G0 (w)
=

ψ(w,R) + α (θ (w)) (w −R)

α (θ (w)) (y − w)(w −R)
(34)

It appears thatG00(w) has the same sign as the function χ(w,R) ≡ ψ(w,R)+α (θ (w)) (w−R).
Hence, the properties of the actual wage distribution depend on the number of roots of the
equation χ(w,R) = 0. The following assumption will be useful to obtain more precise results.

Assumption A5 Let ψ : [0, y]×R→ R be such that

χ(w,R) = ψ(w,R) + α (θ (w)) (w −R)

For all R ∈ [0, y], χ(w,R) = 0 has a unique root in w.

One can check that this assumption is satisfied with a Cobb-Douglas matching function (α
is then a constant) and with an isoelastic efficiency search function (γ is then a constant).

Proposition 5 Properties of the actual wage distribution
Under Assumptions A1 to A3,
(i) Non-monotonicity. The actual wage distribution G : [R, y] → [0, 1] is non-monotonous

and satisfies G0 (R) = G0 (y) = 0.
(ii) Stochastic dominance. G (w) < F (w) for all w ∈ (R, y)
(iii) Single-peak. If in addition A5 holds, the actual wage distribution is ∩-shaped

As with the wage offer distribution, the actual wage distribution features properties that are
remarkably consistent with the facts: non-monotonous and generally single-peaked. However,
unlike the wage offer distribution, the actual wage distribution is not always right-tailed. Note
that the wage offer distribution first-order stochastically dominates the actual wage distribution.
It means that individuals confronted with both distributions would unambiguously choose the
latter. Such a result is hardly surprising: job-seekers observe the wage offer distribution and
alter the wage they will be paid later by modulating their search investment on each sub-market.
This optimization process makes the actual wage distribution looks better than the wage offer
distribution.
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4.3 A Cobb-Douglas example

We end this section by considering usual explicit forms for the matching function and the
efficiency of effort function. In the sequel, we will refer to this particular case as the Cobb-
Douglas example. It appears that with such specifications, the wage offer distribution and the
actual wage distribution are strongly linked with a well-known statistical distribution, the Beta
distribution.

Proposition 6 The Cobb-Douglas example
Assume that m(θ) = M0θ

−α, M0 > 0, α ∈ (0, 1) and x(s) = s
γ

1+γ , γ > 0. Let ω =
(w −R) / (y −R) be the normalized wage, and also let HF be the cdf of the normalized wage
offer distribution, while HG is the cdf of the actual normalized wage distribution. Then,

(i) H 0
F is the density of a β

¡
1−α
α γ + 1

α + 1, γ + 1
¢
distribution, that is

H 0
F (ω) =

(1− ω)
1−α
α

γ+ 1
α ωγ

B
¡
1−α
α γ + 1

α + 1, γ + 1
¢ , ∀ω ∈ [0, 1]

(ii) H 0
G is the density of a β

¡
1−α
α (γ + 1) + 1, γ + 1

¢
distribution, that is

H 0
G (ω) =

(1− ω)
1−α
α
(γ+1) ωγ

B
¡
1−α
α (γ + 1) + 1, γ + 1

¢ , ∀ω ∈ [0, 1]
where B is the Beta function such that

B (t1 + 1, t2 + 1) =

Z 1

0
(1− ξ)t1 ξt2dξ

The Cobb-Douglas example displays several appealing features. First, we can find a normal-
ization of the wage such that the offer distribution and actual distribution of such normalized
wage follow simple Beta distributions. Second, the parameters of the Beta distributions only
involve elasticity of the matching function and elasticity of effort function. We do not need to
solve the model to find the shape of the different wage distributions. Third, wage distributions
are both single-peaked. Fourth, the wage offer distribution has a flat right tail. Moreover,

F 00 (R) = γ
(y −R)

1−α
α

γ+ 1
αR y

R(y − ξ)
1−α
α

γ+ 1
α (ξ −R)γdξ

lim
w→R

(w −R)γ−1

Thus F 00 (R) can either be nil or infinite depending on whether γ is larger or lower than one.
Fifth, we can highlight the parameter circumstances under which the actual wage distribution
has a flat right tail. Indeed, G”(y) = 0 if γ > 2α−1

1−α and G”(y) = −∞ if γ < 2α−1
1−α . Thus,

the actual wage distribution is right-skewed when the parameters of the matching function and
the search function satisfy γ > 2α−1

1−α . Right-skewness is not a systematic property but can
occur for a wide range of parameters of the model. Similarly, we can show that G00 (R) = 0 if
γ > 1 and G00 (R) =∞ if γ < 1. Therefore, the Cobb-Douglas case is consistent with an actual
wage distribution characterized by a single peak, a flat right tail, and no left tail. This is so
when 2α−1

1−α < γ < 1. The following figure depicts the pdf of the wage offer and actual wage
distributions in such a case.
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Figure 2: Wage offer and actual wage distributions - case 2α−1
1−α < γ < 1
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Finally, note the role played by the parameter γ of the efficiency of effort function. When
γ tends to 0, the search intensity is the same in each sub-market. The shape of the wage
distribution only reflects the pattern of market tightness by wage. The density of the wage offer
distribution as well as the density of the actual wage distribution are then strictly decreasing in
wage. Conversely, when γ tends to infinity, the efficiency of effort function has constant marginal
returns. As a result, workers concentrate their search investment in the sub-market where the
returns are the highest. Both the wage offer distribution and the actual wage distribution
collapse to a single wage, the only wage offer of the localized search equilibrium.

From an empirical perspective, the Beta distribution should be rejected by the data because
it does not feature the Paretian tail typical of empirical wage distributions. Yet, two points
should be made. On the one hand, such Beta distribution is obtained for homogeneous firms
and workers. Introducing some heterogeneity on the firm/worker side should make the Cobb-
Douglas example compatible with a Paretian-tailed aggregate wage distribution. On the other
hand, the main objective of the Cobb-Douglas example is to illustrate our main results. Another
parameterization of the effort function can generate wage distributions that fit the empirical wage
distributions better. But, of course, at the cost of losing the simplicity of the Cobb-Douglas
example.

5 Efficiency

In this section, we compare the decentralized outcome to the efficient allocation. This comparison
is made under the two cases highlighted so far, i.e. when search is localized and when workers
are ubiquitous. We show that the localized search equilibrium is efficient, while the ubiquitous
search equilibrium is not. We proceed in two steps. First, we compute efficient allocations at a
given number of matching places. Second, we endogenize the number of matching places.

5.1 Efficient allocations at a given number of matching places

The main conceptual difficulty associated with efficient allocation relies on the segmentation of
the search place. In a decentralized economy, the search market is segmented by wage: each
wage is associated to an autonomous sub-market. It means that market segmentation requires
wage dispersion. For the planner’s problem, we shall assume that the search place is segmented:
in this sub-section, we assume as Moen (1997) that the mass-number of matching places (islands,
for short) is given.

Let I be the measure of islands, and i ∈ [0, I] be their index. Under localized search, the
unemployed are bound to search for a job on a single matching place. The benevolent planner
chooses the number of unemployed u (i) and the number of vacancies v (i) assigned to island
i. The overall unemployment rate is then given by u =

R I
0 u (i) di. Under ubiquitous search

there are no restrictions on the number of prospected places, and u (i) = u in each island. In
both cases, the planner sets the search effort s (i) of workers seeking a job on island i. As a
consequence, the total cost of search investment is defined by

R I
0 c (s (i))u (i) di when search is

localized and by uc
³R I
0 s (i) di

´
when search is ubiquitous. The tightness specific to island i is

given by θ(i) = v (i) / [x (s(i))u] in case of ubiquitous search and by θ(i) = v (i) / [x (s(i))u(i)]
in case of localized search. In both cases, the job-finding rate specific to island i is equal to
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x(s(i))θ(i)m [θ(i)]. When search is localized, we have:

u̇(i) = q [1− u(i)]− u(i)x(s(i))θ(i)m (θ(i)) di, for all i ∈ [0, I] (35)

While when search is ubiquitous, the dynamic of unemployment is:

u̇ = q (1− u)− u

Z I

0
x(s(i))θ(i)m (θ(i)) di (36)

The instantaneous net social products in case of localized search and in case of ubiquitous
search are respectively given by:

ω = y

µ
1−

Z I

0
u (i) di

¶
+ z

Z I

0
u (i) di− c

µZ I

0
s (i)u(i)di

¶
− h

IZ
0

θ(i)x(s(i))u(i)di

ω = y (1− u) + uz − uc

µZ I

0
s (i) di

¶
− hu

IZ
0

θ(i)x(s(i))di

The planner’s problem is to maximize the discounted social product
Z +∞

0
ωe−rtdt with

respect to the relevant variables s(i), θ(i), u (i) or u, and subject to the relevant law of motion,
that is (36) or (35).

The following result describes the stationary solutions of this maximization program for each
search environment.

Proposition 7 Efficient allocations
Under Assumptions A1 and A2, for any given number I of search places
(i) In the localized search case, there is a unique stationary efficient allocation such that

s (i) = sl and θ (i) = θl for all i ∈ [0, I], with

h

m
¡
θl
¢ =

£
1− α

¡
θl
¢¤ £

y − z + c
¡
sl
¢¤

r + q + x(sl)α
¡
θl
¢
θlm

¡
θl
¢ (37)

c0
³
sl
´

=
α
¡
θl
¢

1− α
¡
θl
¢hθlx0 ³sl´ (38)

(ii) In the ubiquitous search case, there is a unique stationary efficient allocation such that
s (i) = su and θ (i) = θu, for all i ∈ [0, I], with

h

m (θu)
=

[1− α (θu)] [y − z + c (Isu)]

r + q + x(su)α (θu) θum (θu) I
(39)

c0 (Isu) =
α (θu)

1− α (θu)
hθux0(su) (40)

Comparing (37) and (38) with their decentralized counterpart (17) shows that the localized
search equilibrium is efficient. This result is very similar to Moen (1997). Wage-posting can
thus decentralize the efficient allocation.
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When search is ubiquitous, part (ii) of the proposition shows that the planner sets the same
tightness and the same search intensity for all individuals in each island of the interval [0, I].
Tightness and search intensity are decreasing in the measure I of islands. It follows that the
ubiquitous search equilibrium is inefficient. Consider for instance the case where I = y − R,
with R the equilibrium reservation wage. In this case, the number of opened matching places is
the same in the social optimum and in the decentralized economy. However, search investment
varies from one sub-market to another in the decentralized economy, while it is constant in each
island at the social optimum.

The reason for inefficiency is very close to GK. When workers make multiple job applications
(or search simultaneously on several sub-markets), the expected number of matches is maximized
by allocating applications uniformly across jobs (by spreading search effort uniformly across
sub-markets). Julien, Kennes and King (2006) also give a simple argument along these lines.
However, the decentralized allocation features wage dispersion. It follows that search investment
varies across jobs, violating efficiency.

5.2 On the number of matching places

In this sub-section, we discuss the optimal number of matching places that would be chosen by
the social planner.

Let us begin with the localized search case. Proposition 7 shows that at a given number of
matching places, all allocations featuring a search intensity sl and a tightness θl are efficient.
Owing to constant returns to scale in the matching technology and due to the fact that each
worker must be assigned to a single search place, the stationary social product does not depend
on the number of matching places. As a result, the efficient number of matching places is
indeterminate under localized search. If there were a fixed cost associated with each search
place, the planner would only create a single matching place.

Now, we turn to the ubiquitous search environment. To simplify, consider the case where the
discount rate r tends to 0. Then, efficient allocation maximizes the stationary social product.
The optimal number of market places results from:

max
I≥0

{ω (I) = (1− u (I)) y + u (I) [z − c (Isu (I))]− hu (I) Iθu (I)xu (I)} (41)

where θu and su are defined by Proposition 7, and u (I) = q/ [q + θu (I)m (θu (I))x (su (I)) I].
The derivative of the objective with respect to I is:

ω0 (I) = −∂u (I)
∂I

[y − z + c (Isu (I)) + hIθu (I)xu (I)]−u (I) su (I) c0 (Isu (I))−hu (I) θu (I)x (su (I))
(42)

Using equations (39) and (40), we obtain:

ω0 (I) =
α

1− α
hu (I) θu (I)x (su (I))

£
1− su (I)x0 (su (I)) /x (su (I))

¤
(43)

which has the sign of the term between brackets. This term is positive for all I, given that
su tends to 0 as I tends to infinity and x is strictly concave. It follows that the optimal
number of matching places is infinite. Indeed, the planner uses the fact that there are decreasing
marginal returns to search investment: he/she opens an infinite number of matching places and
sets an arbitrarily small search intensity in each place. Similarly tightness tends to 0. This
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result illustrates the inefficiency of the decentralized economy, in which the mass-number of
sub-markets is finite. However, it also highlights the asymmetry between the centralized and
the decentralized mechanisms. Indeed, the planner can achieve segmentation of the search
place without any instrument, while market segmentation in the decentralized economy requires
equilibrium wage dispersion.

To obtain a finite mass-number of islands at the social optimum, we can marginally modify
the technological side of the model. The point is that for the planner, it is always worth
decreasing search intensity, while simultaneously increasing the number of matching places.
Therefore, we need to alter the search technology, and in particular the efficiency of effort
function. For instance, suppose that x (s) > 0 if and only if s > s0. Or, alternatively, suppose
that x is strictly convex, and then concave. Subsequently, the optimal number of matching
places is finite, and the search intensity is positive in each matching place. The latter simply
responds to the following condition familiar to specialists of the efficiency wage literature:

su (I)x0 (su (I)) /x (su (I)) = 1 (44)

Similarly, one can modify the search cost function so that it directly depends on the number of
prospected places. This assumption would indeed limit the optimal number of matching places.
Of course, the decentralized economy would also be affected by such assumptions. The main
difference would be that both the lower bound and the upper bound of the wage distributions
would become endogenous. Indeed, sub-markets offering wages such that V e (w) is close to V u

(i.e. w close to R), or such that θ (w) is close to 0 (i.e. w close to y) would not be opened in
equilibrium. However, the density of the wage offer distribution, as well as the density of the
actual wage distribution would still be hump-shaped4.

6 Conclusion

This paper offers a search equilibrium model in which firms post wages, and there are homo-
geneous firms and workers. The main originality of the model relies on the working of the
search market. We assume that the search market is segmented by wage, and workers choose
the amount of search effort they spend on each (sub-)market. Workers are thus ubiquitous in
the sense that they are not bound to choose one and only one market, but can visit the whole
set of markets opened in equilibrium. The main result is that a non-degenerate equilibrium
wage distribution exists and can replicate two major properties of empirical wage distributions,
e.g. the distribution can be single-peaked and right-skewed. All the results are illustrated by a
Cobb-Douglas example, in which the wage distribution is a Beta distribution.

A key feature of our model relies on its simplicity. Its main goal is to show that a rather
natural extension of the usual directed search assumptions (precisely the consideration of ubiq-
uity in market participation) leads to an equilibrium distribution of wages displaying empirically
convincing properties. But, as it stands, our model cannot directly pretend to fit actual wage dis-
tributions. Understanding the quantitative role played by ubiquitous search requires the model
to be extended in a number of directions. The next step is to introduce heterogeneity. This can
be done by abandoning the assumption whereby the productivity of a worker is constant once
matched to a firm. One could rather assume that there exists a non-degenerate distribution
of output reflecting firm heterogeneity, worker heterogeneity, or both. Another area of study

4The model would become more difficult to solve, and thus would lose some of its appealing features.
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concerns the profile of wages. A well-documented property of individual wage profile is that it is
increasing with tenure. Such a property does not arise in our model but it does occur in models
with on-the-job search. Thus, another possible step is to add into our model of ubiquitous search
the possibility of searching while employed.

Some policy issues also remain open. Unlike the standard directed search model, the ubiq-
uitous search model ends up with an equilibrium that is not efficient. Hence, other instruments
are needed to achieve efficiency.
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APPENDIX

A Proof of Lemma 1

We have φ (R,R) ≥ 0, φ (y,R) ≤ 0. Then, note that according to Assumption A2, the match-
ing function is strictly concave. This implies that [θm (θ)]0 = MV (1, θ) > 0 and [θm (θ)] ” =
MV V (1, θ) < 0. As [θm(θ)]

0 = m(θ) [1− α(θ)], resulting in

[θm(θ)]” = m0 (θ) [1− α (θ)]− α0 (θ)m (θ)

= m (θ)

∙
−α (θ)

θ
(1− α (θ))− α0 (θ)

¸
It follows that:

α0 (θ) > −α (θ)
θ
(1− α (θ)) (45)

Now, consider the derivative of function φ with respect to w:

φw (w,R) = α0 (θ (w)) θ0 (w) (y −R)− 1

with

α (θ (w))
θ0 (w)

θ (w)
= − 1

y − w
(46)

Equations (45) and (46) imply that

φw (w,R) <
1− α (θ (w))

y − w
(y −R)− 1 = −φ(w,R)

y −w

This relationship implies that φw (w,R) < 0 whenever φ (w,R) > 0. Consequently, the equation
φ (w,R) = 0 has a unique root in w.

B Proof of Proposition 1

Part (i). The formulas appearing in (i) simply replicate relations (7) (8), (11) and (12).
Part (ii). As a preliminary step, let us examine the property of the function σ : [z, y] → R

given by equation (7). Assumption A1 implies that σ (z) = 0 and σ0 (R) > 0. Solving system
(13)-(16) is reduced to finding (w∗, R∗) such that

c0 [σ(R)] = x0 [σ(R)] θ (w)m (θ (w))
w −R

r + q
(47)

w = α (θ (w)) y + [1− α (θ (w))]R (48)

From Lemma 1, equation (48) implicitly defines a unique w1 = w1 (R). It is strictly increasing
in R, with z < w1 (z) < w1 (y) = y. Now, consider the following function:

J(w,R) = x0 [σ(R)] θ(w)m (θ(w))
w −R

r + q
− c0 [σ(R)]
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An equilibrium solves K (R) = J(w1(R), R) = 0. Assumptions A1 and A2 together with the
properties of the function σ established below imply that

K (z) = θ(w1 (z))m (θ(w1 (z)))
w1 (z)− z

r + q
lim
R→z

x0 (σ (R)) > 0

K (y) = −c0 (σ (y)) < 0

Therefore, it is sufficient to show that function K is strictly decreasing. But,

K 0(R) = w01(R)Jw(w1(R), R) + JR(w1(R), R)

Since Jw(w1(R), R) = 0 for all R, we have

K 0(R) = JR(w1(R), R) =

∙
x”θm (θ)

w1 (R)−R

r + q
− c”

¸
σ0(R)− x0θm(θ)

1

r + q
< 0

It follows that R∗ is unique. Then, w∗ = w1 (R
∗) and θ∗ = m−1

³
h(r+q)
y−w

´
are uniquely defined.

C Proof of Proposition 2

The formulas appearing in Proposition 2 have been established in the text. It remains to show
that they define a unique equilibrium. To do this, one can remark that thanks to Assumption
A2 equation (23) defines a unique specific market tightness function θ(w). Then, equation (24)
can be solved in s as a function of w, S and R. Let e (w,R, S) be this unique solution. From
Assumption A1 and the implicit function theorem, the partial derivatives of e (w,R, S) are such
that:

eS =
c”(S)

c0(S)

x0(e)

x”(e)
< 0, eR =

1

w −R

x0(e)

x”(e)
< 0

In addition, lim
S→0

e (w,R, S) <∞, while lim
S→∞

e (w,R, S) = 0.

Now, substitute e (w,R, S) for s(w) in equation (25), and consider the function ψ such that

ψ (R,S) = R− z + c(S)−
Z y

R
x [e (w,R, S)] θ (w)m [θ (w)]

w −R

r + q
dw (49)

The properties of the function ψ are as follows:

lim
S→0

ψ (R,S) = R− z −
Z y

R
x [e (w,R, 0)] θ (w)m [θ (w)]

w −R

r + q
dw

lim
S→∞

ψ (R,S) = +∞

ψS (R,S) = c0(S)

µ
1−

Z y

R
eSdw

¶
> 0

It follows that there exists a unique S1 ≡ S1 (R) such that ψ (R,S1) = 0 iff lim
S→0

ψ (R,S) ≤ 0.
But,

lim
R→z

ψ (R,S) = c (S)−
Z y

z
x [e (w, z, S)] θ (w)m [θ (w)]

w −R

r + q
dw

lim
R→y

ψ (R,S) = y − z > 0 (50)

ψR (R,S) = 1 +

Z y

R

x [s (w)] θ (w)m (θ (w))

r + q
dw − c0(S)

Z y

R
eRdw > 0
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Therefore, there exists a unique eR ∈ (z, y) such that lim
S→0

ψ (R,S) ≤ 0 if and only if R ≤ eR.
To summarize, equation (25) implicitly defines S1 (R) for all R ∈ [z, y], with

S1

³ eR´ = 0 and S01 (R) <

R y
R eRdw

1−
R y
R eSdw

< 0 (51)

Moreover, when e (w,R, S) is substituted for s(w) in equation (26), we obtain another equation
defining a unique S as a function of R. We call this function S2 (R). Differentiating this latter
equation with respect to R gives:µ

1−
Z y

R
eSdw

¶
dS

dR
= −e(R,R, S) +

Z y

R
eRdw

Assumption A2 and equation (24) imply that e(R,R, S) = 0. Consequently

S02 (R) =

R y
R eRdw

1−
R y
R eSdw

< 0 (52)

So far, we have shown that S01(R) < S02(R) < 0. In addition, S2(y) = 0, which implies that

S2

³ eR´ > S1

³ eR´ = 0. Lastly, S1(z) and S2(z) are given by:

S2(z) =

Z y

z
e [w, z, S2(z)] dw

c [S1(z)] = c0 [S1(z)]

Z y

z

x [e (w, z, S1(z))]

x0 [e (w, z, S1(z))]
dw (53)

Assumption A1 implies that x (e) /x0 (e) > e and c(s)/c0(s) < s, therefore (53) gives

S1(z) >
c [S1(z)]

c0 [S1(z)]
>

Z y

z
e [w, z, S1(z)] dw

which proves that S1(z) > S2(z). All these properties of the functions S1(R) and S2(R) entail
that they cross once at a point such that R∗ ∈ (z, y). Thus, the equilibrium values of R and S
are unique. It follows that the equilibrium functions θ∗(w) and s∗(w) given respectively by (23)
and (24) are also unique.

D Proof of Proposition 3

Relation (23) and Assumption A2 imply that θ(y) = 0. Therefore, relation (24) and Assumption
A1 imply that s(y) = 0. Furthermore, (23) shows that θ(R) is finite and (24) and Assumption
A1 then entails that s(R) = 0. Since s is continuous and s (w) > 0 for all w ∈ (R, y), the
function s is not monotonous. Then, s0 (w) is continuous and has the sign of φ (w,R). The
result follows from Lemma 1.
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E Proof of Proposition 4

Part (i). According to proposition 3, one has s (R) = s (y) = 0. Remembering that θ(y) = 0
and that θ(R) is finite, relation (29) arrives at F 0 (R) = F 0 (y) = 0. The result follows from the
facts that F 0 is continuous and F 0 (w) > 0 for all w ∈ (R, y).

Part (ii). Note that F 00 (w) has the sign of ψ(w,R). Hence, each root of the equation
ψ (w,R) = 0 corresponds to a point where F 00 (w) = 0. If Assumption A4 holds, the equation
ψ(w,R) = 0 has a unique root and the wage offer distribution is ∩-shaped.

Part (iii). Equation (31) shows that:

F”(y) = lim
w→y

1

α (θ (w))

F 0(w)

y − w
{[α (θ (w))− 1] γ (w)− 1}

Using (29) and (23), one arrives at:

F”(y) =
u

vh(r + q)
lim
w→y

θ (w)m (θ (w))x (s (w))

α (θ (w))
{[α (θ (w))− 1] γ (w)− 1}

The result follows from the facts that θ (w)m (θ (w)) and x [s (w)] are equal to zero when w → y.

F Proof of Proposition 5

Part (i). As G0(w) = vF 0(w)m [θ(w)] /λu, part (i) of Proposition 4 implies that G0 (R) =
G0 (y) = 0. The result follows from the fact that G0 (w) > 0 for all w ∈ (R, y) and the continuity
of G0.

Part (ii). As m [θ(w)] = h(r+q)
y−w — see (23) —, relation (32) becomes:

G0(w) =
v

λu

h(r + q)

y − w
F 0(w)

Let us denote by w0 the unique wage such that v
λu

h(r+q)
y−w0 = 1. A priori, w0 can be greater or

smaller than R. Let us suppose first that w0 ≥ R. One has G0(w) < F 0(w) for w < w0 and
G0(w) > F 0(w) for w > w0. Therefore, when w < w0 one has:

G(w) =

Z w

R
G0(ξ)dξ <

Z w

R
F 0(ξ)dξ = F (w)

While, when w > w0, one has:

1−G(w) =

Z y

w
G0(ξ)dξ >

Z y

w
F 0(ξ)dξ = 1− F (w) (54)

Hence, one always has G(w) < F (w) when w0 ≥ R.
Now, let us assume that w0 < R. Then, one has G0(w) > F 0(w) for all w ≥ R, and (54)

holds for all w ≥ R. Consequently, G(w) < F (w) when w0 < R.
Part (iii). G00 (w) has the sign of χ(w,R). Hence, each root of the equation χ(w,R) = 0

corresponds to a point where F 00 (w) = 0. If Assumption A5 holds, the equation χ(w,R) = 0
has a unique root and the actual wage distribution is ∩-shaped.
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G Proof of Proposition 6

Part (i). In the Cobb-Douglas case, equation (31) becomes:

F”(w)

F 0(w)
=

γ [αy + (1− α)R− w]

α(y − w)(w −R)
− 1

α(y − w)

Integrating this equation with the condition
R y
R F 0(w)dw = 1 yields:

F 0(w) =
(y − w)

1−α
α

γ+ 1
α (w −R)γR y

R(y − ξ)
1−α
α

γ+ 1
α (ξ −R)γdξ

,∀w ∈ [0, y]

The cdf of the normalized wage satisfies

HF (ω) = Pr

µ
w −R

y −R
≤ ω

¶
= Pr (w ≤ R+ ω(y −R)) = F [R+ ω(y −R)]

Therefore, H 0
F (ω) = (y −R)F 0 [R+ ω(y −R)], and the result follows.

Part (ii). Using the definitions of the functions φ(w,R) and ψ(w,R), equation (34) becomes:

G00 (w)

G0 (w)
=

γ(y −R)

(y −w)(w −R)
− 1 + γ − α

α(y − w)

Integrating this equation with the condition
R y
RG0(w)dw = 1 yields

G0(w) =
(y − w)

(1+γ)(1−α)
α (w −R)γR y

R(y − ξ)
(1+γ)(1−α)

α (ξ −R)γdξ
(55)

The cdf of the actual normalized wage is such that

HG(ω) = Pr

µ
w −R

y −R
≤ ω

¶
= Pr (w ≤ R+ ω(y −R)) = G [R+ ω(y −R)]

Therefore one gets H 0
G(ω) = (y −R)G0 [R+ ω(y −R)], and the result follows.

H Proof of Proposition 7

Part (i). Let ρ (i) denote the costate variable related to (35). The current-valued Hamiltonian
of the problem is:

H = ωe−rt +

IZ
0

ρ(i) {q [1− u(i)]− u(i)x(s(i))θ(i)mθ(i)} di

The first-order conditions are:

∂H
∂s(i)

=
∂H
∂θ(i)

= 0,
∂H
∂u(i)

= −ρ̇(i)
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The condition ∂H/∂s(i) = 0 gives£
c0(s(i)) + hθ(i)x0(s(i))

¤
e−rt + ρ(i)x0(s(i))θ(i)m (θ(i)) = 0, ∀i[0, I] (56)

Similarly, the condition ∂H/∂θ(i) = 0 gives

he−rt = −ρ(i)m (θ(i)) [1− α (θ(i))] , ∀i[0, I] (57)

The Euler equations read as:

[−y + z − c(s(i))− hθ(i)x(s(i))s(i)] e−rt − ρ(i) [q + x(s(i))θ(i)m (θ(i))] = −ρ̇(i) (58)

Differentiating (57) with respect to time, and taking the result at the stationary state (where
θ̇(i) = 0), entails ρ̇(i) = −rρ(i). Equations (58) and 57) then give

h

m (θ(i))
=

[1− α (θ(i))] [y − z + c (s(i))]

r + q + x(s(i))α (θ(i)) θ(i)m (θ(i))
(59)

Similarly, equations (56) and (57) give

c0 (s(i)) =
α (θ(i))

1− α (θ(i))
hθ(i)x0(s(i)) (60)

Equations (59) and (60) form a system of two equations with two unknowns s(i) and θ(i). These
conditions are similar to the localized search equilibrium given by the system (17). Therefore a
unique solution results and s(i) = sl, while θ(i) = θl, for all i[0, I]. Finally, note that the Euler
conditions are satisfied for all u (i) ≥ 0, so that if I were also a control variable, the number of
opened matching places would be indeterminate.

Part (ii). Let us denote by ρ the costate variable related to (36), the Hamiltonian of the
problem is:

H = ωe−rt + ρ

⎡⎣q(1− u)− u

IZ
0

x(s(i))θ(i)m (θ(i)) di

⎤⎦ (61)

The first-order conditions are

∂H
∂s(i)

=
∂H
∂θ(i)

= 0, ∀i[0, I], ∂H
∂u

= −ρ̇ (62)

The f.o.c. with respect to s (i) implies⎡⎣c0
⎛⎝ IZ

0

s(i)di

⎞⎠+ hθ(i)x0(s(i))

⎤⎦ e−rt + ρx0(s(i))θ(i)m (θ(i)) = 0, ∀i[0, I] (63)

Similarly, the f.o.c. with respect to θ (i) implies

he−rt = −ρm (θ(i)) [1− α (θ(i))] , ∀i[0, I] (64)
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The Euler equation reads⎡⎣−y + z − c

⎛⎝ IZ
0

s(i)di

⎞⎠− h

IZ
0

θ(i)x(s(i))di

⎤⎦ e−rt − ρ

⎡⎣q + IZ
0

x(s(i))θ(i)m (θ(i)) di

⎤⎦ = −ρ̇
(65)

Equation (64) shows that θ(i) does not depend upon i, hence θ(i) = θu for all i ∈ [0, I]. Then,
eliminating ρ between (63) and (64) arrives at:

c0

⎛⎝ IZ
0

s(i)di

⎞⎠ =
α (θ)

1− α (θ)
hθx0(s(i)) (66)

This equation shows that s(i) does not depend on i, hence s(i) = su, for all i ∈ [0, I]. This last
equation gives

c0 (Isu) =
α (θu)

1− α (θu)
hθux0(su) (67)

Differentiating (64) with respect to time, and taking the result at the stationary state (where
θ̇ = 0), entails ρ̇ = −rρ. The Euler equation (65) combined with (64) then gives

h

m (θu)
= (1− α (θu))

y − z + c (Isu)

r + q + Ix(su)α (θu) θum (θu)
(68)

I Proof that there are no multiple offers

Consider the function λ (w) defined over [R, y] such that λ is positive and continuous. Under
ubiquitous search, λ (w) = x [s (w)] θ (w)m [θ (w)]. Cut the interval [R, y] into n intervals of the
same length dw = (y −R) /n. Each interval is an island. On island i ∈ {1, ..., n}, there is a
unique wage wi = R+(i− 1) dw/n. Now, consider island i, and cut it into m intervals. Assume
that the probability of receiving an offer from any such interval is λidwdt/m over the period dt,
with λi = λ (wi).

Let Xi be the number of offers received from island i over the period dt. The probability of
receiving ki ∈ {0, ...,m} offers is:

Pr (X = ki) = Cki
m (λidwdt/m)

ki (1− λidwdt/m)
m−ki (69)

As m→∞, it tends to

Pr (X = ki) = e−λidwdt
(λidwdt)

ki

ki!
(70)

Hence, Xi follows the Poisson law of parameter λidwdt.

Now, consider the random variable X =
nP
i=1

Xi which is the total number of offers received

from all the islands over the period dt. As the different variables are independent draws from
Poisson laws, the sum of the draws also follows a Poisson law, whose parameter is the sum of
the parameters of the different Poisson laws. Hence,

Pr (X = k) = Pr

Ã
nX
i=1

Xi = k

!
= e−λdt

(λdt)k

k!
, with λ =

nX
i=1

λidw (71)
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As n → +∞, we obtain that X follows the Poisson law of parameter λ = lim
n→+∞

nP
i=1

λidw =R y
R λ(w)dw. The remainder of the proof is standard. Following Mortensen (1986),

Pr (X = k)

dt
= e−λdt

λk (dt)k−1

k!
(72)

The right-hand side tends to 0 when dt tends to 0 for all k > 1. Similarly, it tends to λ
when dt tends to 0 when k = 1. It follows that the probability of receiving more than one offer
conditional to the fact that the worker receives at least one offer tends to 0 when dt tends to 0.
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